Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0363120240370010026
Korean Journal of Pain
2024 Volume.37 No. 1 p.26 ~ p.33
Anti-inflammatory and antinociceptive effects of sitagliptin in animal models and possible mechanisms involved in the antinociceptive activity
Valiollah Hajhashemi

Hossein Sadeghi
Fatemeh Karimi Madab
Abstract
Background: Sitagliptin is an antidiabetic drug that inhibits dipeptidyl peptidase-4 enzyme. This study aimed to investigate the antinociceptive and anti-inflammatory effects of sitagliptin in formalin and carrageenan tests and determine the possible mechanism(s) of its antinociceptive activity.

Methods: Male Swiss mice (25?30 g) and male Wistar rats (180?220 g) were used for formalin and carrageenan tests, respectively. In the formalin test, paw licking time and in the carrageenan test, paw thickness were considered as indexes of pain behavior and inflammation respectively. Three doses of sitagliptin (2.5, 5, and 10 mg/kg) were used in these tests. Also, several antagonists and enzyme inhibitors were used to evaluate the role of adrenergic, serotonergic, dopaminergic, and opioid receptors as well as the NO/cGMP/KATP pathway in the antinociceptive effect of sitagliptin (5 mg/kg).

Results: Sitagliptin showed significant antinociceptive and anti-inflammatory effects in the formalin and carrageenan tests respectively. In the carrageenan test, all three doses of sitagliptin significantly (P < 0.001) reduced paw thickness. Pretreatment with yohimbine, prazosin, propranolol, naloxone, and cyproheptadine could not reverse the antinociceptive effect of sitagliptin (5 mg/Kg), which indicates that adrenergic, opioid, and serotonin receptors (5HT2) are not involved in the antinociceptive effects. L-NAME, methylene blue, glibenclamide, ondansetron, and sulpiride were able to reverse this effect.

Conclusions: NO/cGMP/KATP, 5HT3 and D2 pathways play an important role in the antinociceptive effect of sitagliptin. Additionally significant anti-inflammatory effects observed in the carrageenan test might contribute in reduction of pain response in the second phase of the formalin test.
KEYWORD
Analgesics, Anti-Inflammatory Agents, Carrageenan, Dipeptidyl-Peptidases and Tripeptidyl-Peptidases, Formaldehyde, Mice, Pain, Pain Measurement, Sitagliptin Phosphate
FullTexts / Linksout information
 
Listed journal information